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Abstract

We have additionally purified a commercial lysozyme preparation by cation exchange chromatography, followed by

recrystallization. This material is 99.96% pure with respect to macromolecular impurities. At basic pH, the purified

lysozyme gave only tetragonal crystals at 20°C. Protein used directly from the bottle, prepared by dialysis against distilled

water, or which did not bind to the cation exchange column had considerably altered crystallization behavior. Lysozyme

which did not bind to the cation exchange column was subsequently purified by size exclusion chromatography. This

material gave predominately bundles of rod-shaped crystals with some small tetragonal crystals at lower pHs. The origin of

the bundled rod habit was postulated to be a thermally dependent tetragonal ,--, orthorhombic change in the protein structure.

This was subsequently ruled out on the basis of crystallization behavior and growth rate experiments. This suggests that

heterogeneous forms of lysozyme may be responsible. These results demonstrate three classes of impurities: (I) small

molecules, which may be removed by dialysis; (2) macromolecules, which are removable by chromatographic techniques;

and (3) heterogeneous forms of the protein, which can be removed in this case by cation exchange chromatography. Of

these, heterogeneous forms of the lysozyme apparently have the greatest affect on its crystallization behavior.

1. Introduction

The effects of impurities on the protein crystal

growth process has attracted increasing attention [1-

9]. It is now recognized that commercially available

lysozyme is not pure, typically containing several

macromolecular contaminants as well as assorted

buffer and precipitant salts which together often

comprise up to 15% of the dry weight [5,6,10]. It is

also evident that simple recrystallization does not

result in a markedly more pure protein; commercial

lysozyme preparations are typically recrystallized

" Corresponding author.

from 3 to 6 times, yet still contain significant amounts

of macromolecular impurities. Sources of the impuri-

ties may be from the added solution components or

as a result of the preparation process. Alternatively,

for many proteins, the growth affecting impurity may

be an altered form of the protein itself. For example,

proteases are often subject to auto degradation [8].

While the enzymatic function of lysozyme is the

lysis of bacterial cell walls, its crystallization behav-

ior can be affected by contaminating fungi [6].

Abergei et al. demonstrated that controlled con-

tamination of turkey with other avian lysozymes

affected the nucleation rate and crystal habit, with

detectable cocrystallization [4]. Lorber et al. [5],

0022-0248/96/$15.00 © 1996 Elsevier Science B.V. All rights reserved
SSDI 0022-0248(95)00933-7
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using electrophoretic and chromatographic methods,

found impurities of M r = 26, 45, and 80 K in various

commercial lysozyme preparations. They also per-

formed controlled contamination experiments and

were able to correlate the amount of contaminating

protein added to increased twinning. Wilson, using a
differential dialysis system, was able to show the

presence of five proteins in a commercial lysozyme
preparation, having molecular weights of 14.6
(lysozyme), 17.5, 27.8, 46.8 and 77.9 K [10]. These

molecular weights were maintained in the presence

of disulfide reducing agents and a denaturing agent,

indicating that all were single chain proteins and not

aggregated lysozyme.

Impurities have been implicated in affecting the
lysozyme crystal growth process. Lorber et al. indi-

cated a correlation between the impurity level and
the solubility, aggregation, and nucleation rate of

tetragonai lysozyme [5]. Studies using Michelson

interferometry suggested a significant impurity effect
on the (101) face growth rate with the presence of a

pronounced dead zone [7]. However, averaged face

growth rate measurements, using chromatographi-
cally repurified protein, were found to be virtually
identical to those obtained previously using material

prepared by dialysis and recrystallization only
[11,12].

Protein molecules are not rigid structures and
another form of impurity could be protein which is
in a different structural conformation. The evidence

suggests that the thermally induced tetragonal

orthorhombic transition for iysozyme is based upon a
conformational change in the protein structure, and
that the orthorhombic form is somewhat stable in the

tetragonal phase region [13,14]. Structural shifts may

also occur in proteins as a response to, for example,

the solution pH, ionic strength, or binding to specific
molecules in the solution. As in the case of the

tetragonal ,,-* orthorhombic shifts for lysozyme, these

may be more rapid in one direction than the other,

leading to mixed structural populations in apparently
homogenous solutions. Thus, one must take the his-

tory of the protein into account when assessing

purity. The most common method of purity assess-
ment, gel electrophoresis of the reduced and dena-

tured protein, relies on converting the protein into a

random coil so that the electrophoretic mobility is
only a function of the mass. In such a case, subtle

structural changes which may be significant in terms

of bioactivity or crystal growth are lost.

For the past several years, this laboratory has used

only lysozyme which we have additionally purified
by ion exchange chromatography for our growth rate

experiments [11,12,15]. The initial impetus for the

following work came from a reported 0.01 pH unit
dependent change in the crystal habit for bovine

pancreatic trypsin inhibitor [16]. A temperature, salt
concentration, and pH dependent transition for

iysozyme at acidic conditions has been shown on the

basis of solubility studies [17]. We believed that a

similar effect, with a tetragonal o orthorhombic

transition, might be found above pH = 7.0 based

upon reports of the orthorhombic form occurring

there when the protein is crystallized from egg white
[I 4,18-22]. The appearance of well-formed tetrago-

nal crystals instead, using highly purified lysozyme,

throughout the range investigated (pH = 7.0-8.9)

prompted the following study of the impurities in a

commercial lysozyme preparation and the effects of

their removal on crystallization behavior.

2. Materials and methods

Chicken egg white lysozyme from Sigma (St.

Louis, MO, USA, grades I and III) was used

throughout this work. Lysozyme concentrations were
I%

determined by UV absorbance, using an At28_.5 ,,1) =
26.4 [23]. Measurements of lysozyme catalytic activ-

ity were performed using the micrococcus lysodeikti-
cus lysis assay [24].

The lysozyme was repurified by cation exchange

chromatography as previously described [11], except
that CM-Sepharose 6B-CL (Pharmacia) was used as

the exchanger. Briefly, the protein was dissolved in

and dialyzed against 0.1M sodium phosphate, 0.5%

(w/v) sodium chloride, pH = 6.4, at room tempera-

ture. The dialyzed protein was clarified by centrifu-

gation, then loaded onto a CM-Sepharose 6B-CL
column (2.5 x 21 cm 2) equilibrated with the above

buffer. The column was washed with equilibrating
buffer and then eluted stepwise with 0.1M sodium

phosphate, 2.87% sodium chloride, pH = 6.4. The

column flow rate of ~ 4 ml/min was maintained by
a peristaltic pump. The eluted protein solution was

brought to 10% sodium chloride by the slow addi-
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tion, with stirring, of the solid salt, then cooled to

4°C to promote crystallization. The crystalline sus-

pension was stored at 4°C until use, at which time
the crystals were recovered by centrifugation, then
dissolved in and dialyzed against the buffer to be

used in subsequent experiments.
Size exclusion chromatography was performed

with a Pharmacia FPLC system and a Superose 12

column at room temperature. The column was equili-
brated in 0.2M ammonium carbonate buffer. The

flow rate was 0.5 ml/min and fractions of 0.2 ml

were collected. Protein was prepared for chromatog-

raphy by dilution into the column buffer to a final
concentration of ~ 1-5 mg/ml. The identity of the

ovotransferrin and ovalbumin peaks was verified by

running pure samples of both proteins (Sigma)

through the column using the same conditions em-

ployed for lysozyme. Molecular weights of the impu-
rities were further verified by SDS gel electrophore-

sis using a PhastSystem gel electrophoresis apparatus

(Pharmacia), operated in accordance with the manu-
facturers instructions and using their low molecular

weight standards calibration kit.
Crystallization experiments were set up using a

Robotic Protein Crystallization System II (ICN
Biomedicals, Inc., Costa Mesa, CA, USA) and

CrysChem sitting drop crystallization plates (Charles

Supper Co., Natick, MA, USA). Unless otherwise
indicated, the final protein concentrations were 30

mg/ml, and the equilibration conditions for all crys-
tallization solutions were 0.1M tris buffer (Sigma),

5% (w/v) NaC! (Sigma, analytical grade), with the

pH ranging from 7.0 to 8.9 in 0.1 pH unit incre-
ments. The plates were sealed with clear tape and

incubated at 20 + 0.5°C. Crystal face growth rate

measurements were performed using the techniques
and instrumentation previously described [25,26].

X-ray crystallographic analysis of lysozyme crys-
tals was performed using a Siemens multiwire area

detector mounted on a Rigaku rotating anode X-ray

generator. Cu K a radiation was generated at 40 kV
and 100 mA, and collimated with a graphite
monochromator to 0.3 mm. Data was collected at a

crystal to detector distance of 12 cm, with the detec-

tor -22 °. The oscillation angle during data collec-
tion was 0.25 ° and each frame of data collected over

60 s. Data was reduced to structure factors with the

Xengen package [27].

3. Results

The purity of the protein prepared by cation ex-

change chromatography was assessed with size ex-
clusion chromatography. Previous electrophoretic

analysis had indicated that the material was pure,
with no other macromolecular contaminants de-

tectable [11]. Size exclusion chromatography was

employed to better quantitate any macromolecular

impurities remaining. The column elution profiles at

two detector scale ranges are shown in Fig. 1. Identi-

cal amounts of protein were injected onto the column
in both runs. In the first profile, with the detector set

at 2.0 absorbance units full scale, the purified

lysozyme solution gave a single, fairly symmetrical

peak. The slight tailing observed was due to lysozyme
binding to the column, a common problem for

lysozyme chromatography on carbohydrate matrix-

based column media. This problem could be reduced

somewhat by the use of higher ionic strength buffers.
However, a balance must be observed between the

buffer concentration and the protein concentration.

Too high a buffer concentration would result in

protein crystallization on the column bed. Initial

attempts at sample preparation by the dialysis of

concentrated protein solution into the 0.2M ammo-
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runs are shown, differing only by the absorbancescale of the UV
detector.
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nium carbonate buffer resulted in showers of

needle-shaped crystals.

A second profile, with the identical amount of

protein loaded onto the column, but the detector set

to 0.02 absorbance units full scale, displayed an

almost flat base line until the onset of the lysozyme

peak. The slight double peak (< 0.0004 absorbance

units) immediately before the lysozyme peak was

residual contaminating proteins. These contaminants

have previously been identified as ovotransferrin and

ovalbumin (M r = 80 and 45 K) [5]. We further veri-

fied the correspondence of the contaminant peaks

with these proteins by separate control runs with

pure solutions of each protein. The ratio of the areas
of the purified lysozyme peak at the 2.0 absorbance

scale and the contaminants peak at the 0.02 ab-

sorbance scale was estimated by cutting out and

weighing each peak. The slight double peak was
divided at the lowest point between the maxima, and

the corresponding areas of each part adjusted for the
absorbance ratios of ovotransferrin or ovalbumin. On

the basis of the adjusted area ratios the chromato-

graphically repurified lysozyme was estimated to be

> 99.93% pure with respect to detectable macro-
molecular contaminants. Trace amounts of a third

contaminant, the serine protease inhibitor ovomucoid

(M r ._ 28 K) [28] cannot be estimated as the peak
would be overwhelmed by the closely eluting

lysozyme peak. However, ovomucoid binds less

tightly to cation exchange columns than ovotransfer-

fin or ovalbumin [29] and therefore it is unlikely that

its residual concentration in the purified lysozyme

would be greater than that of those two proteins.
These results do not rule out the presence of other
contaminants which do not absorb at 280 nm. How-

ever, the presence of such contaminants, assuming

they are protein, has not been observed on SDS gels
[5,10,17].

Fig. 2 shows the size exclusion column elution

profile from the protein fraction which did not ad-

sorb to the cation exchange column. This material

contained the contaminating proteins present in the

original lysozyme. In this particular case, most of the
lysozyme bound to the column which resulted in the

amount of contaminating proteins being greater rela-

tive to the amount of non-binding lysozyme. The
four peaks, from left to fight, are identified on the

basis of their molecular weights as ovotransferrin

(M r = 80 K), ovalbumin (M r -- 45 K), ovomucoid

(M r _ 28 K), and lysozyme (M r --- 14 K). The slight
double peak found on the 0.02 absorbance units scale

of Fig. 1 corresponds to the ovotransferrin and oval-

bumin peaks of Fig. 2.

A series of crystallization trials, at 0.2 pH unit

increments, over the pH range 7.0-8.9 were per-

formed on the cation exchange purified lysozyme,

the commercial protein, and fractions derived from

it. These results are summarized in Fig. 3. The initial

observation, that for purified lysozyme only tetrago-

nal crystals were obtained from pH = 7.0 through
8.9, are shown in row (!). Columns (a)-(d) are the

crystals obtained at pH = 7.4, 7.8, 8.2, and 8.6,

respectively. A progressive increase in the size and
reduction in the number of the crystals was observed

as the pH of the crystallization solution increased.

The crystals at higher pH values, as shown in panel
(ld), were flattened along the four-fold axis, charac-

teristic of tetragonal lysozyme grown at high super-
saturations [30]. Crystals grown at lower pHs were

more elongated along the four-fold axis, indicative of

growth at lower supersaturations. The same results
shown in row (1) were also obtained when the

crystallization buffers were 0.05M sodium phosphate

1.0.
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I

50

b
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Minutes

Fig. 2. Gel filtration chromatography of the mat_rial which did not

adsorb to the cation exchange column. From left to right the peaks

are ovotransferrin, ovalbumin, ovomucoid, and lysozyme.
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pH = 5.7-8.0 and 0.1M sodium bicarbonate buffer

pH = 9.2-9.8.
X-ray crystallographic analysis of the tetragonal

crystals grown at pH = 8.2 indicated a space group

of P432_2 with unit cell parameters of a = b = 79.1
and c = 38.1 ,_. These results are in close agreement

with those found by previous analysis of the tetrago-

nal crystal at acidic pH [22]. A crystal of dimensions
0.5 x 0.4 x 0.4 mm 3 was used, yielding 7374 unique

(or approximately 90% of the total possible) reflec-
tions at 2.0 A resolution. The average redundancy

was 4.7, giving an Rsym = 6.9%. A more detailed

study is currently underway to identify what struc-
tural differences, if any, exist between the acidic and

basic crystalline protein structures.
The second row of Fig. 3 shows the crystals

obtained with commercial lysozyme prepared by

simply dissolving the protein from the bottle into
distilled water. A sharp change was found in the

crystal habit, occurring between pH = 7.6 and 7.8,

with the crystals going from the characteristic tetrag-
onal form to a bundled rod habit. Because of their

small size, we were not able to confirm their type by

X-ray diffraction. Presumably they are the same as
the orthorhombic form previously obtained at basic

pH [14]. The third row of Fig. 3 shows the results
obtained when the protein was extensively dialyzed

against distilled water prior to crystallization. In this
case, only bundled rods were found. As in row (2),

the rods appear to become finer with increasing pH.

The procedure for the cation exchange purifica-

tion of lysozyme used a column equilibration buffer

2

Fig. 3. Summary of the crystallization behavior of the various lysozyme fractions. Each row of photographs is from a different fraction in

the purification process, while each column is a different pH. Crystallization pHs are: (a) 7.4, (b) 7.8, (c) 8.2, and (d) 8.6. Row (1) is the

cation exchange purified lysozyme, row (2) is unpurified lysozyme used directly from the bottle, row (3) is lysozyme prepared only by

dialysis against distilled water, and row (4) is the non-binding protein which was subsequently isolated by gel filtration. All photographs are

at the same scale, with the bar in Fig. 4a equal to 1 mm.
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Fig. 4. Effect of the storage temperature on the face growth rate of

tetragonal crystals at 20°C. Legend: (O) protein stored at 4°C;

(X) protein stored at 37°C.

of 0.1M sodium phosphate, 0.5% sodium chloride,

pH = 6.4. Following loading of the protein onto the

column it was briefly washed with equilibrating

buffer prior to eluting the bound lysozyme. This

procedure often resulted in a large portion of the

protein, up to 50% as determined by UV. ab-

sorbance, passing through the column during the

loading and washing steps. Electrophoretic analysis

had previously shown that some of the non-binding

protein was lysozyme, also shown by the size exclu-
sion column elution pattern in Fig. 2. When rechro-

matography of this material was tried it typically
again passed directly through the column. Separate

experiments to determine if the non-binding lysozyme

was due to overloading of the column indicated that

this was not the case. In practice, only ~ 1/5-1/4

of the total lysozyme binding capacity of the column

was used for purification runs (data not shown).

Purification of the non-binding lysozyme away from
the high molecular weight components was accom-

plished by FPLC on Superose-12. Crystallization of

this purified non-binding lysozyme at basic pH again
resulted in crystals of the bundled rod habit as shown

in Fig. 3, row (d).

Activity measurements performed with the run-

through, compared to the purified, lysozyme solu-

tions had shown that the catalytic activity/mass of

Fig. 5. Effect of storage temperature on the nucleation and growth of crystals at 20°C. A 30 mg/ml protein solution was divided in half,

with one aliquot stored at 4 and the other at 37_C. Mixtures were then crystallized by the sitting drop technique. The bar in (F) is 1.0 mm.

Legend: (A) 100%, 4°C; (B) 50/50, 4/37°C; (C) 30/70, 4/37_C; (D) 20/80, 4/37°C; (E) 10/90, 4/37°C; (F) 100%, 37°C.
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protein remained unchanged (data not shown). It was

suspected that the origins of the non-binding protein,
and thus the altered crystallization behavior, was due

to the presence of lysozyme molecules with ther-

mally induced altered conformations. However,

warming an aliquot of the protein to 37°C for 4 h,

followed by fractionation on a small CM Sepharose

column with a shallow salt gradient, failed to conclu-

sively demonstrate that this had occurred or, if it

had, that the two conformations could be chromato-

graphically resolved (data not shown).
Additional tests were made on whether heat treat-

ment of the purified protein could affect its crystal-
lization behavior. Comparative face growth rate mea-
surements were made at 4 and 20°C, using protein

solutions maintained at 4 and 37°C. The results for

the 20°C growth rate measurements are shown in

Fig. 4, and indicate that the storage temperature did

not affect the growth rates. The results from the

growth rate experiments at 4°C (data not shown)

were comparable to the 20°C experiments.
To further test the effects of heat treatment on

crystallization behavior, sitting drop experiments

were set up to determine the effects on nucleation.
As with the growth rate measurements, a iysozyme

solution was divided into two aliquots, with one
stored at 4 and the other at 37°C. Sitting drop

crystallization experiments were set up at 0.1M

sodium acetate pH = 4.6 and 0.1M tris HCI pH = 8.2,
both at 5% NaCI and 20°C, using protein stored at

the two temperatures and systematic mixtures of the
two solutions. The results were similar at both pH

values, and those for the pH = 8.2 experiments are
shown in the photographs in Fig. 5. In most of the

crystallization wells only tetragonal crystals were

obtained, although a few crystals in the bundled rod
habit were obtained at pH = 8.2. The data indicates

that there was a pronounced effect of the storage

temperature on the subsequent nucleation rate at
20°C. A systematic decrease in the number of nuclei
formed was found with increasing percentages of the

37°C stored protein. However, only a slight increase
in size is found with this decrease in nucleation rate,

and the axial ratios are similar in all cases. This

indicates that all crystals grew at approximately the

same supersaturation. For comparison, note the pro-

nounced differences with pH in the crystals of puri-

fied lysozyme in Fig. 3, row (1).

4. Discussion

The separation of crystal growth effects due to the

presence of impurities versus those due to the solu-
tion behavior of the macromolecule itself have be-

come important. A series of publications have re-

cently shown that commercially prepared lysozyme
has macromolecular impurities [5,6,10], that added

contaminants affect the lysozyme crystallization pro-

cess [4,5], and that lysozyme crystallization can be

affected by microbial contamination [6]. We have

also found macromolecular impurities to be present,
which determination initially led to the use of cation

exchange repurification of commercially available

protein [11]. By using this procedure, it is possible to

rapidly purify lysozyme in 3-5 g quantities to >

99.9% purity with respect to other macromolecules.

Protein prepared by this procedure has been rou-

tinely employed in all growth rate experiments in
this laboratory for the last several years [11,12,15].

However, previous to the work given above, we had
not observed any appreciable difference in the crys-

tallization behavior or growth rate data at acidic pH

when compared to earlier experiments using com-

mercial protein prepared only by recrystallization

and dialysis. It was only when we searched for a pH

dependent tetragonal---> orthorhombic phase change

above pH = 7.0 that we became aware of an effect
which could be linked to the presence of impurities.

During the cation exchange purification process, a
considerable fraction of the lysozyme loaded onto
the column did not bind, but simply passed on

through with the contaminating proteins. Control

experiments indicated that the column had not been
overloaded. Further, the percentage of non-binding

material was not a function of the amount loaded

onto the column, but was dependent upon the com-

mercial preparation. Not all commercial lysozyme
preparations are equivalent, as previously shown by
others [5,10]. It has been this laboratories experience

that there is variability even with the same material

(different lot numbers) from a given vendor. Typi-

cally, with the lysozyme (Sigma cat. #L-7001) most

commonly used in this laboratory ~ 10-50% does
not bind to the cation exchange column. No apparent

correlation exists between the amount of lysozyme
which binds and the amount of other macromolecu-

lar impurities present. This suggests that the lysozyme
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itself was affected by conditions during and after the

original purification from the egg white. However,

these changes in the crystallization behavior cannot

be attributed to a tetragonal _ orthorhombic confor-

mational shift. Support for this comes from the

crystallization behavior of the purified non-binding

lysozyme and the purified binding lysozyme, and an
inability to conclusively affect the crystal forms ob-

tained at basic pH by heat treatment. A comparison

of the lytic activity of the two protein populations

also showed no significant differences. Thus, if there

is a change in the protein it does not affect its

biological function.

Cation exchange chromatography had been ini-

tially used to separate out non-binding lysozyme and

other macromolecular impurities. Size exclusion
chromatography was then used to separate the non-

binding lysozyme from the other proteins. From a

protein purification standpoint, the use of gel filtra-
tion is generally not a desirable method for the

preparation of large quantities of material. This is

especially true for lysozyme. Many of the matrix

materials commonly employed for gel filtration resins
are based upon carbohydrate backbones, which

iysozyme binds. Agarose-based gel filtration media
have been employed as an affinity material for the

purification of lysozymes [31,32]. Thus, iysozyme

tends to either elute at an abnormally low molecular
weight (high retention volume) and/or have an elu-

tion profile which "tails". This tailing is evident in

Fig. 1, despite the use of both high salt and pH
buffer. However, this material had already passed

through a cation exchange column without binding.
Only a small amount of protein was required for the

subsequent crystallization trials, therefore, we re-

sorted to the use of gel filtration chromatography to

achieve its purification. A high pH buffer was used

to minimize protein interactions with the column
matrix.

The use of cation exchange chromatography for

lysozyme purification is not of itself novel. Early

reports of lysozyme isolation from egg whites uti-
lized adsorption onto bentonite [18]. The high iso-

electric point of lysozyme suggested that weak cation
exchangers would be an excellent method for its

purification, and after their introduction they have

been commonly employed to rapidly isolate lysozyme

directly from egg whites [29,33-35]. Most likely, the

ready availability of commercial protein preparations

that have been purified by multiple recrystallizations
has led to the neglect of this simple method of

purification.

It is not surprising to find that macromolecular

impurities persist even after multiple recrystalliza-

tions. The crystalline surface is covered with acidic

and basic groups, and has a net charge which will be

greater the further from the isoelectric point. Even at

the isoelectric point there will be charged groups

present. The putative macromolecular impurities also

carry a net charge, and may bind to the crystalline

surface which acts as an ion exchanger. Rapid nucle-

ation and small terminal crystal size, typical of
preparative recrystallizations, result in an increased

surface area, all of which means an increased proba-

bility of binding other macromolecular impurities
which may be present in the solution.

In experiments to test whether exposure to high

temperatures (37°C) may be responsible for the ap-

pearance of the bundled rod habit crystals at basic

pH, we found that the nucleation process is indeed

affected, but that subsequent crystal growth is not.
However, no conclusive evidence was obtained that

exposure to high temperatures results in the appear-
ance of the (presumably) orthorhombic form at basic

pH. The nucleation results differ from those previ-
ously obtained by Berthou and Joll_s [14]. They

found that if the protein solution was preheated at
40°C, then cooled and crystallization initiated at

20°C, only orthorhombic crystals were obtained, with
an apparent nucleation rate faster than for the corre-

sponding tetragonal crystals from non-warmed solu-

tions. We find instead that the tetragonal form per-
sists despite the warming, and that the nucleation

rate is apparently reduced. Berthou and Joll_s did

find a reduction in the nucleation rate of the tetrago-
nal crystals when the pre-warmed materials were

subsequently cooled to 4°C, similar to our findings at
20°C. These results suggest that a conformational

change is involved. However, if such a change is

important to the nucleation of a particular crystal

form it is apparently not important for subsequent
crystal growth.

These results demonstrate that one cannot rely on

a manufacturer's claim of purity by repetitive recrys-

tallization of protein for use in crystal growth stud-

ies. Protein crystal growth may be affected by the
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dialyzable (small molecule) and non-dialyzable

(macromolecular) components also present in the
bottle. However, even after removal of these compo-

nents, the protein is itself subject to heterogeneity

which may have an even greater affect on its crystal-
lization behavior than either other macromolecular or

small molecule components. In this study, very little

effect is found on the lysozyme crystallization be-

havior at basic pH when the macromolecular and

small molecule contaminants are removed. The pre-

dominate effect may come from heterogeneous forms
of the protein itself. We are currently working on

isolating these forms, and identifying the alterations

responsible for the changes in crystallization behav-
ior.
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